Hierarchical, multilayered cell walls reinforced by recycled silk cocoons enhance the structural integrity of honeybee combs.
نویسندگان
چکیده
We reveal the sophisticated and hierarchical structure of honeybee combs and measure the elastic properties of fresh and old natural honeycombs at different scales by optical microscope, environmental scanning electron microscope, nano/microindentation, and by tension and shear tests. We demonstrate that the comb walls are continuously strengthened and stiffened without becoming fragile by the addition of thin wax layers reinforced by recycled silk cocoons reminiscent of modern fiber-reinforced composite laminates. This is done to increase its margin of safety against collapse due to a temperature increase. Artificial engineering honeycombs mimic only the macroscopic geometry of natural honeycombs, but have yet to achieve the microstructural sophistication of their natural counterparts. The natural honeycombs serve as a prototype of truly biomimetic cellular materials with hitherto unattainable improvement in stiffness, strength, toughness, and thermal stability.
منابع مشابه
A novel inexpensive method for preparation of silk nanofibers from cocoons
AbstractIn the present study , a novel method for the production of silk nano fibers are presented . In this way , a mechanical and easy technique is used instead of toxic and costly chemical methods . Also , the separation of silk nano fibers from the cocoon was carried out by mechanical homogenizer and probe ultrasonic homogenizer . After the preparation of silk nanofibers , the product was c...
متن کاملProduction, structure and in vitro degradation of electrospun honeybee silk nanofibers.
Honeybees produce silken cocoons containing four related fibrous proteins. High levels of each of the honeybee silk proteins can be produced recombinantly by fermentation in Escherichia coli. In this study we have used electrospinning to fabricate a single recombinant honeybee silk protein, AmelF3, into nanofibers of around 200 nm diameter. Infrared spectroscopy found that the molecular structu...
متن کاملControlling the Molecular Structure and Physical Properties of Artificial Honeybee Silk by Heating or by Immersion in Solvents
Honeybee larvae produce silken cocoons that provide mechanical stability to the hive. The silk proteins are small and non-repetitive and therefore can be produced at large scale by fermentation in E. coli. The recombinant proteins can be fabricated into a range of forms; however the resultant material is soluble in water and requires a post production stabilizing treatment. In this study, we de...
متن کاملSingle Honeybee Silk Protein Mimics Properties of Multi-Protein Silk
Honeybee silk is composed of four fibrous proteins that, unlike other silks, are readily synthesized at full-length and high yield. The four silk genes have been conserved for over 150 million years in all investigated bee, ant and hornet species, implying a distinct functional role for each protein. However, the amino acid composition and molecular architecture of the proteins are similar, sug...
متن کاملDimorphic cocoons of the cecropia moth (Hyalophora cecropia): Morphological, behavioral, and biophysical differences
The larvae of the giant silk moth (Hyalophora cecropia) spin strikingly dimorphic, multilayered cocoons that are either large and fluffy (baggy) or significantly smaller and tightly woven (compact). Although these cocoon-morphs share the same function (i.e., housing for pupal to adult development during overwintering), previous work has been unable to determine why cocoon dimorphism exists. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 21 شماره
صفحات -
تاریخ انتشار 2010